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Abstract. We consider the problem of embedding points from an arbitrary finite metric space
into a target metric space while preserving, up to a small distortion, only a subset of the pairwise
distances specified by a bounded degree graph G. We provide a general reduction showing that, in
many cases, this is no easier than embedding the points while approximately preserving all pairwise
distances.

As an illustration of our general reduction, we show that there exists a Euclidean metric space
X on n points along with a graph G = (X,E) of maximum degree 3 such that any embedding of X
into ℓm2 which only preserves distances specified by E up to a relative error of (1 + ε) must satisfy
m = Ω(ε−2 logn), which matches the upper bound on the dimension coming from the Johnson-
Lindenstrauss lemma (for approximately preserving all pairwise distances). Previously, such a
lower bound was known only for the class of noncontracting embeddings [Schechtman-Shraibman,
Discrete & Computational Geometry, 2009].
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1. Introduction

Dimension reduction is a cornerstone of modern data analysis and theoretical computer science,
providing methods to represent high-dimensional data in lower-dimensional spaces while preserving
essential geometric properties. The Johnson-Lindenstrauss (JL) lemma [10] is a seminal result,
establishing that any set of n points in Euclidean space can be embedded into ℓ

O(logn/ε2)
2 (the

Euclidean space in O(log n/ε2) dimensions) while preserving all pairwise Euclidean distances up to
a (1 + ε) distortion. It was shown by Larsen and Nelson that this bound is tight up to constant
factors for ε ∈ (n−0.499, 1) (see [11, Theorem 2] for a more general statement). Another seminal
result in the theory of metric embeddings is Bourgain’s embedding theorem [7], which asserts that
every metric space on n points can be embedded into Euclidean space with distortion O(log n); this
is known to be tight up to constant factors (see, e.g., [12]). Here, we say that an embedding f from
a metric space (X, dX) to a metric space (Y, dY ) has distortion at most D ≥ 1 if there exists r > 0
such that

r · dX(x, y) ≤ dY (f(x), f(y)) ≤ D · r · dX(x, y) ∀x, y ∈ X.

Local dimension reduction. In numerous applications, particularly those dealing with massive
or inherently complex datasets like social networks or biological data, preserving the full distance
information is often unnecessary and may be computationally expensive without incurring high
distortion. Instead, maintaining the local structure of the data – the geometry and relationships of
“neighboring” points – is of primary interest. This motivates the formal study of local dimension
reduction, initiated by Abraham, Bartal, and Neiman [1] (see also the expanded journal version [3]).
They proposed several novel formalisms [1, Definition 1] to capture the notion of local distortion
that are based on the metric space’s intrinsic structure, such as k-local distortion: an embedding
f from a metric space (X, dX) to a metric space (Y, dY ) is said to have k-local distortion α if
dY (f(u), f(v)) ≤ dX(u, v) for all u, v ∈ X and dY (f(u), f(v)) ≥ dX(u, v)/α for every u and every v
which is among the k-nearest neighbors of u.

The results of [1] demonstrated that for their metric-based notions of local distortion, it is often
possible to achieve embeddings with distortion or dimension dependent only on the locality param-
eter (e.g. k, in the notion of k-local distortion above) rather than the total number of points n. For
instance, improving their result [1, Theorem 2], they showed in follow up work [2, Theorem 1] that
any metric space (on n points) can be embedded into ℓ

O(ep log2 k)
p with k-local distortion O(log k/p)

(for any k ≤ n, 1 ≤ p ≤ log k). In the low distortion setting of the JL lemma, they showed [2, The-
orem 2] that for any ε > 0 and p ≥ 1, an ultrametric space admits an embedding into ℓ

O(log k/ε3)
p

with k-local distortion (1 + ε).
A natural question (asked in [1, Section 11]) is whether the ultrametricity assumption in the

above result can be removed; specifically, is there a k-local version of the JL lemma, i.e. can any
finite set of points in ℓ2 be embedded into ℓ

O(log k/ε2)
2 with distortion (1 + ε)? This was answered

in the negative by Schechtman and Shraibman [13], who constructed a set of n+ 1 points X ⊆ Rn

such that any embedding f : X → ℓm2 with 3-local distortion (1 + ε) (for a sufficiently small con-
stant ε > 0) must have dimension m = Ω(log n) [13, Theorem 9] (see also [13, Theorem 8] which
obtains a lower bound with near optimal ε dependence under more requirements on the embedding).

Graphically local dimension reduction. The focus of this article is a different, graphical notion
of local dimension reduction, which was studied by Schechtman and Shraibman [13, Section 5].

Definition 1.1. Let (X, dX) and (Y, dY ) be metric spaces. Let G = (X,E) be a graph whose
vertices are points of X. We say that a (not-necessarily injective) map f : (X, dX) → (Y, dY ) is a
G-local D-embedding, where D ≥ 1 is a real number, if there is a real number r > 0 such that

r · dX(x, y) ≤ dY (f(x), f(y)) ≤ D · r · dX(x, y) ∀{x, y} ∈ E. (1.1)
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The infimum of the numbers D ≥ 1 such that f is a G-local D-embedding is called the G-local
distortion of f .

Remark. In the case that G is the complete graph on X, this reduces to the usual notion of (global)
distortion. Also, k-local distortion essentially corresponds to the case when G is the k-nearest
neighbour graph on X.

The natural choice of locality parameter in this setting is the maximum degree ∆ of the graph
G. In a similar spirit as the work of Abraham, Bartal, and Neiman [1], one can ask whether it is
possible to achieve embeddings with G-local distortion or dimension dependent only on this locality
parameter ∆. The possibility of this is suggested by the following example, highlighted in both [2]
and [13].

Example 1.2. Let (X, dX) be the set of points X = {e1, . . . , en} ⊆ Rn endowed with the Euclidean
metric. Alon [4] showed that any embedding f : (X, dX) → ℓm2 with distortion (1 + ε) must satisfy
m = Ω(log n/(log(1/ε)ε2)). However, for any G = (X,E) of maximum degree ∆, one may construct
a G-local embedding g : X → ℓ

O(log∆/ε2)
2 with distortion (1 + ε) as follows. First, since G has

maximum degree at most ∆, we may greedily find a map h : X → {e1, . . . , e∆+1} ⊆ ℓ∆+1
2 such

that h(u) ̸= h(v) if {u, v} ∈ E. The crucial property of h is that it is a G-local isometry i.e for
any {u, v} ∈ E, dX(u, v) = ∥h(u)−h(v)∥2. Now, we compose h with a Johnson-Lindenstrauss map
from ℓ∆+1

2 to ℓ
O(log∆/ε2)
2 to obtain the desired embedding g.

Since the set in Example 1.2 is a standard “hardness” example for the JL lemma, one may ask
whether there is a G-local version of the JL lemma depending on the maximum degree ∆. For
instance, this was asked in [9], where it was observed that if this were true, the embedding achiev-
ing this result would necessarily have to be non-linear. To the best of our knowledge, the only
lower bound known for this problem is due to Schechtman and Shraibman. In [13, Theorem 11],
they show that for X as in Example 1.2 and for any d-regular G = (X,E) with d ≥ 3 and second
eigenvalue bounded by d/2, any G-local (1 + ε)-embedding f : X → ℓm2 which is non-contracting
(i.e. satisfies ∥f(x) − f(y)∥2 ≥ (1 − ε)∥x − y∥2 for all x, y ∈ X) must satisfy m = Ω(log n). Of
course, the non-contracting assumption precludes the embedding of Example 1.2, which achieves
m = O(log∆/ε2).

Our contribution. We show that in many settings of interest, including those of the JL lemma
and Bourgain’s embedding theorem, G-local embeddings do not provide any asymptotic saving
in the dimension/distortion over global embeddings. This is in sharp contrast to metrically local
embeddings (as in [1]) for which such savings are possible in high distortion regimes, as discussed
above.

Our main technical contribution is a general reduction (Theorem 2.2), which takes as input a
metric space (X, dX) and constructs a metric extension (Z, dZ) along with a graph G = (Z,E)
of maximum degree 3 such that any map f : (Z, dZ) → (Y, dY ) which (approximately) preserves
distances for points in Z connected by an edge must necessarily (approximately) preserve all pairwise
distances among points in X (in fact, there is a version of this statement for any distortion D).
By applying this reduction with (X, dX) being a known hard instance for some metric embedding
problem, we are able to construct hard instances for G-local metric embeddings. We illustrate this
with two applications: Corollary 2.6, which is a lower bound for G-local JL which is optimal up to
a constant (unless ε is too small as a function of n) and Corollary 2.5, which is a lower bound for
G-local embeddings of arbitrary finite metric spaces into Euclidean space, which is again optimal
up to a constant. We also highlight some open problems.
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2. Statements and proofs

In light of the equilateral space example (Example 1.2) and anticipating an open problem, we
will track the aspect ratio of the metric spaces appearing in the statements of our results.

Definition 2.1. Let (X, dX) be a finite metric space. The aspect ratio of X is defined to be the
ratio of the maximum to minimum distance in X, i.e.

AX :=
maxx ̸=y dX(x, y)

minx ̸=y dX(x, y)
.

Our main result is the following.

Theorem 2.2. Let (X, dX) be a metric space with |X| = n and aspect ratio AX .
Suppose for a metric space (Y, dY ), there exists a real number D ≥ 1 such that any embedding

f : (X, dX) → (Y, dY ) has distortion at least D. Then, for any δ ∈ (0, 1/100), there exists:
(1) a metric space (Z, dZ) – with |Z| = O(n2) and aspect ratio AZ = O(AX · D2n/δ) – and

a graph G = (Z,E) with maximum degree 3 such that for any h : (Z, dZ) → (Y, dY ), the
G-local distortion of h is at least D − δ.

(2) a metric space (Z, dZ) – with |Z| = O(n2) and aspect ratio AZ = O(AX ·D2 log n/δ) – and
a graph G = (Z,E) with maximum degree 4 such that for any h : (Z, dZ) → (Y, dY ), the
G-local distortion of h is at least D − δ.

Moreover, if (X, dX) is an ℓp-metric space for p ∈ [1,∞], then (Z, dZ) can be taken to be an ℓp
metric space as well.

Remark. We record several remarks about the optimality of this result.
(1) The bound of 3 on the maximum degree of G is the smallest possible. In Proposition 2.4,

we show that for any finite metric space (X, dX) and any graph G = (X,E) of maximum
degree at most 2, there exists a G-local isometric embedding f : X → ℓ2p. On the other
hand, as discussed earlier, there are examples of (X, dX) such that any embedding into ℓ2
incurs distortion Ω(log n).

(2) The bound |Z| = O(n2) cannot be improved in general. Indeed, Indyk and Wagner [8,
Theorem 6.2] showed that Ω(n2 log(1/ε)) bits are required to sketch finite metric spaces
on n points for which all distances are between 1 and 2, up to distortion (1 + ε) (see
[8, Section 2] for formal definitions). Applying our theorem with (Y, dY ) = ℓ∞ (into which
every metric embeds isometrically) and δ = ε, it follows that storing the resulting metric
(Z, dZ) restricted to the edges of G = (Z,E), up to relative error (1 + ε), gives a sketch
for (X, dX) with distortion (1 + 2ε). By rounding each of the O(|Z|) distances we need to
store to the nearest integer power of (1 + ε) and storing the exponent (after appropriate
scaling), this requires O(|Z| log(log(n/ε)/ε)) = O(|Z| log(1/ε)+ |Z| log log(n/ε)) bits, which
contradicts the lower bound in [8] (say for ε < 1/ log n) unless |Z| = Ω(n2).

(3) On the other hand, we do not know of any obstruction showing that the bounds on the aspect
ratio AZ are not improvable. In particular, it would be interesting if there is a construction
with both ∆(G) and AZ depending only on AX , D, δ (in particular, independent of n). See
the remark following Corollary 2.6.

Proof of Theorem 2.2. Since |X| = n, it follows that (X, dX) can be isometrically embedded in ℓn∞
(e.g., using the Frechét embedding, see [12]); in particular, we may identify X with a subset of
points in ℓn∞. By adding an arbitrary extra point to X if needed, we may (and will) assume without
loss of generality that n is even. We will prove both conclusions of the theorem in a unified manner.
Accordingly, our metric space and graph will be indexed by a parameter j ∈ {1, 2}, corresponding
to the two different conclusions in the theorem statement.
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Let e1, . . . , en denote the standard basis of ℓn∞ and for i ∈ [n], let vji := αj · ei, where αj will be
chosen later. Consider the following set of points in ℓn∞,

Zj = X ∪ {x+ vji : x ∈ X, i ∈ [n− 1]}

and let (Zj , d
j
Z) be the metric space induced by the ℓ∞ metric on these points. Note that |Zj | =

O(n2), as claimed.
We will construct two graphs, G1 = (Z1, E1) and G2 = (Z2, E2) such that (Zj , d

j
Z) and Gj will

satisfy conclusion (j) of the theorem. Let Kn denote the complete graph on X (recall that |X| = n
is even, without loss of generality). By Baranyai’s Theorem [6], the edges of Kn can be decomposed
into a disjoint union of (n− 1) (perfect) matchings M1, . . . ,Mn−1 (see Figure 1 for an illustration).

w x

z y
M1 M2 M3

Figure 1. K4 can be decomposed into three disjoint perfect matchings M1,M2, and
M3.

First, consider the collection of edges E′
j defined as follows:

E′
j = {{x+ vji , y + vji } : {x, y} ∈ Mi for some i ∈ [n− 1]}.

In words, for each pair of points {x, y} in X, let Mi be the unique matching in which the edge {x, y}
appears. Then, E′

j contains an edge between x + vji and y + vji . Clearly, E′
j is itself a matching,

i.e. has maximum degree 1.
The graphs Gj = (Zj , Ej) are obtained by augmenting E′

j as follows.

• To obtain E1 from E′
1, we add the |X| disjoint cycles of the form x → x+ v11 → · · · → x+

v1n−1 → x. Since the added edges constitute a 2-regular graph, it follows that G1 = (Z1, E1)
is a graph of maximum degree 3. See Figure 2 for an illustration.

• To obtain E2 from E′
2, we add |X| disjoint arbitrary binary trees, rooted at x ∈ X, where

the different binary trees span the points {x, x + v21, . . . , x + v2n−1} for different choices of
x ∈ X. Since the additional edges constitute a graph of maximum degree 3, it follows that
G2 = (Z2, E2) has maximum degree 4. See Figure 3 for an illustration.

To complete our construction, it remains to specify our choice of αj . Let γ := minx ̸=y dX(x, y)
be the minimum distance between two distinct points of X. We set α1 = δγ/(8D2n) and α2 =

δγ/(8D2 log n). With this choice of parameters, the assertion about the aspect ratio of (Zj , d
j
Z) is

immediate. Additionally, we have the following.

Claim 2.3. Suppose the map hj : (Zj , d
j
Z) → (Y, dY ) is a Gj-local D′-embedding with D′ ≤ D

(i.e. satisfies (1.1) with some r > 0 and 1 ≤ D′ ≤ D). Then, for any x ∈ X and i ∈ [n− 1],

dY (hj(x), hj(x+ vji )) ≤ r · δ/8D · γ

Proof. By construction, there is a path from x to x+vji of length at most ⌈n/2⌉ in E1 and length at
most ⌈log n⌉ in E2; in either case, the edges of the path are of the form {x, x+vjk} or {x+vjk, x+vjℓ}.
Denoting the points along the path by x = yj1, y

j
2, . . . , y

j
sj = x+ vji , we have

dY (hj(x), hj(x+ vji )) ≤ dY (hj(y
j
1), hj(y

j
2)) + · · ·+ dY (hj(y

j
sj−1), hj(y

j
sj ))
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w x

z y

w + v1

w + v2

w + v3 x+ v3
x+ v2

x+ v1

y + v1

y + v2
y + v3

z + v1

z + v2
z + v3

Figure 2. G1 = (Z1, E1) for X = {w, x, y, z}. The edges in E′
1, corresponding to

the decomposition in Figure 1, are depicted in blue.

x

x+ v1 x+ v2

x+ v3 x+ v4 x+ v5

Figure 3. The binary tree gadget used in the construction of G2 = (Z2, E2) for
n = |X| = 6.

≤ r ·D ·
(
dZj (y

j
1, y

j
2) + · · ·+ dZj (y

j
sj−1, y

j
sj )

)
≤ r ·D · (sj − 1) · αj

≤ r · δ/8D · γ;

here, the first inequality is the triangle inequality; the second inequality uses that hj is a Gj-local D′-
embedding with D′ ≤ D; the third inequality uses dZj (y

j
k, y

j
k+1) = αj , which is true by construction;

and the last inequality uses our setting of αj along with s1 ≤ n, s2 ≤ ⌈log n⌉. □

With this claim in hand, we proceed with the proof of the theorem. Suppose for contradiction
that there exists hj : (Zj , d

j
Z) → (Y, dY ) which is Gj-local D′-embedding with D′ < D − δ. Let

fj = (hj)|X : (X, dX) → (Y, dY ) denote the restriction of h to X. We will show that the distortion
of fj is strictly less than D, thereby contradicting our assumption.

For x, y ∈ X, x ̸= y, let i ∈ [n − 1] be such that {x + vji , y + vji } ∈ E′
j ⊆ Ej ; recall that such a

value of i is guaranteed to exist by construction. Then,

dY (fj(x), fj(y)) = dY (hj(x), hj(y))

≤ dY (hj(x), hj(x+ vji )) + dY (hj(x+ vji ), hj(y + vji )) + dY (hj(y + vji ), hj(y))

≤ r · (D − δ) · dZj (x+ vji , y + vji ) + 2 · r · δ/8D · γ
= r · (D − δ) · dZj (x, y) + r · δ/4D · γ
= r · (D − δ) · dX(x, y) + r · δ/4D · γ
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≤ r · (D − δ) · (1 + δ/4D) · dX(x, y);

here, the second line is the triangle inequality; the third line follows from Claim 2.3 and the as-
sumption that hj is a Gj-local (D− δ)-embedding; the fourth line follows since the metric on Zj is
a norm; and the last line follows from the definition of γ.

Similarly, we have

dY (fj(x), fj(y)) = dY (hj(x), hj(y))

≥ −dY (hj(x), hj(x+ vji )) + dY (hj(x+ vji ), hj(y + vji ))− dY (hj(y + vji ), hj(y))

≥ r · dZj (x+ vji , y + vji )− 2 · r · δ/8D · γ
= r · dX(x, y)− r · δ/4D · γ
≥ r(1− δ/4D) · dX(x, y).

Combining the above two equations shows that the distortion of f is bounded above by (D −
δ)(1 + δ/4D)(1 − δ/4D)−1, which is at most D by our assumption δ < 1/100; this gives us the
desired contradiction.

Finally, for the “moreover” part, if (X, dX) is an ℓp metric space to start with, then we can view
X as a subset of points in ℓNp for N =

(
n
2

)
(see, e.g. [12, Proposition 1.4.2]) and repeat the proof

above. □

2.1. Graphs of maximum degree two. As remarked after the statement of Theorem 2.2, one
cannot prove the theorem with graphs of maximum degree 2. This follows from the below proposition
due to Sidhanth Mohanty, who has kindly agreed to let us include its proof here.

Proposition 2.4. Let X ⊆ ℓp be a finite set of points. For any graph G = (X,E) of maximum
degree at most 2, there exists a G-local isometry (i.e. 1-embedding) f : X → ℓ2p.

Proof. Since G has maximum degree 2, it is a disjoint union of paths and cycles. Therefore, it
suffices to prove the proposition in the special case when G is a path and when G is a cycle. When
G is a path, say x1 → x2 → · · · → xn, one may even construct a G-local isometry f : X → ℓ1p by
setting f(x1) = 0, and iteratively, setting f(xi) = f(xi−1) + ∥xi − xi−1∥p.

Next, consider the case when G is a cycle: x1 → . . . xn → x1. We will construct a G-local
isometry f : X → ℓ2p. Initialize by setting f(x1) = 0 and f(xn) = ∥x1 − xn∥p · e1. We will construct
f(x2), . . . , f(xn−1) iteratively with the property that ∥f(xi)−f(xi−1)∥p = ∥xi−xi−1∥p and ∥f(xi)−
f(xn)∥p = ∥xi−xn∥p as follows. Let S(x, r) denote the sphere in ℓ2p of radius r, centered at x. Since
∥xn−xi∥p+∥xi−1−xi∥p ≥ ∥xn−xi−1∥p, it follows that S(xi−1, ∥xi−1−xi∥p)∩S(xn, ∥xn−xi∥p) ̸= ∅.
To complete the iteration, let vi denote an arbitrary point in this intersection and set f(xi) = vi.
Figure 4 illustrates this construction for the case when G is a triangle: x1 → x2 → x3 → x1. □

2.2. Applications. We conclude with two quick applications of Theorem 2.2. First, as discussed
in the introduction, it was shown by Abraham, Bartal, and Neiman [2, Theorem 1] that any metric
space on n points can be embedded into ℓ

O(ep log2 k)
p with k-local distortion O(log k/p) (for any k ≤ n

and 1 ≤ p ≤ log k). We show that for graphically local embeddings, this fails in a strong sense:
below, we provide an example of an n point metric space and a graph G of maximum degree 3 such
that any G-local embedding of this metric space into ℓ2 incurs G-local distortion Ω(log n) (recall
that O(log n) global distortion is always achievable by Bourgain’s theorem). We remark that a
similar argument works for all ℓp spaces with fixed p ≥ 1.

Corollary 2.5. For any integer n ≥ 2, there exists a metric space (Z, dZ) with |Z| = Θ(n) and
a graph G = (Z,E) of maximum degree 3 such that any G-local embedding of (Z, dZ) into ℓ2 has
G-local distortion Ω(log n)
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x1

x2
x3

(a)

f(x1)

f(x2)

f(x3)

(b)

Figure 4. (a): G is a triangle: x1 → x2 → x3 → x1.
(b): Construction of a G-local isometry to ℓ2p.

Proof. It is well known that there exists a metric space (X, dX) on Θ(
√
n) points such that any

embedding of (X, dX) into ℓ2 incurs distortion Ω(log n); for instance, one can take (X, dX) to be the
graph metric on a sufficiently good expander with Θ(

√
n) vertices (see, e.g. [12, Theorem 3.5.3]).

The statement now follows by applying part (1) of Theorem 2.2 to this with D = 2δ = Θ(log n). □

Next, we show that that, in general, G-local dimension reduction is no easier than global di-
mension reduction, even for graphs of maximum degree 3. Previously, such a construction was only
known under the additional restriction that the embedding is noncontracting (recall [13, Theorem 11]
due to Schechtman and Shraibman).

Corollary 2.6. For any integers n, d ≥ 2, any ε ∈ (log0.51 n/
√
min(

√
n, d), 1/100) and j ∈ {1, 2},

there exist sets of points Zj ⊆ Rd and graphs Gj = (Zj , Ej) of maximum degree 2 + j such that the
following hold:

• |Zj | = O(n);
• the aspect ratio of the Euclidean metric on Z1 is O(

√
n · ε−2) and on Z2 is O(log n · ε−2);

• for any map f : Zj → Rm satisfying

∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ (1 + ε)∥x− y∥2 ∀{x, y} ∈ Ej ,

we must have
m = Ω(ε−2 log(ε2n)).

Remark. Our result leaves open the following questions.
(1) For global dimension reduction, Larsen and Nelson [11] are able to provide such a lower

bound for every integer n, d and any ε ∈ (log0.51n /
√
min(n, d), 1/100). Is the same lower

bound also true for G-local dimension reduction for the entire range of ε? In our result,
when d ≫

√
n, the range of ε is more limited than in [11].

(2) More interestingly, do there exist lower bound instances with bounded aspect ratio? Or
is it the case that for every Euclidean metric space X on n points whose distances are all
between 1 and Φ, and for every graph G = (X,E) with maximum degree ∆, for every
ε > 0, there exists a G-local embedding of X into ℓm2 with distortion (1 + ε) and with
m = f(ε,∆,Φ)? Observe that this is true for the special case Φ = 1 (Example 1.2). Also
note that, since storing all distances appearing in G to (1 + ε) multiplicative error only
requires O(n∆ log(1/ε) + n∆ log log Φ) bits, the existence of such an embedding cannot be
ruled out simply by sketching arguments (for the JL lemma, the tight lower bound can be
obtained from lower bounds on sketching, see [5]).
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Proof. Let n′ := ⌊
√
n⌋. The main result of Larsen and Nelson [11] shows that for any n′, d ≥ 2

and ε ∈ (log0.51 n′/
√
min(n′, d), 1/100), there exists a set of points X ⊆ Rd of size n′ with aspect

ratio O(ε−1) such that for the Euclidean metric space (X, dX), any embedding f : (X, dX) → Rm

with distortion (1 + 2ε) must satisfy m = Ω(ε−2 log(ε2n)). The result now follows by applying the
“moreover” part of Theorem 2.2 to (X, dX) and (Rm, ∥ · ∥2) with D = 1 + 2ε and δ = ε.

□
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